Analytic theory of L\H transition, barrier structure, and hysteresis for a simple model of coupled particle and heat fluxes
نویسنده
چکیده
The two-field !pressure/density" model for the L→H transition is extended and analyzed qualitatively. In its original form the model is ambiguous as to the location of the transition within the range of bistability of particle and thermal fluxes. Here, the model is regularized by including !i" hyperdiffusion, !ii" time dependence, and !iii" curvature of the pressure profile. The regularizations !i"–!ii" agree and indicate that the Maxwell rule for the forward and back transition applies, as opposed to the maximum flux forward and minimum flux backward transition rules !which yields hysteresis" as suggested previously. Regarding !i"–!ii", simple models suggest that for a pressure gradient driven electric field shear bifurcation, the basic scale of the pedestal is inexorably tied to the particle fueling depth, which normally is the neutral penetration depth. There is no hysteresis predicted by the local model of transport suppression. However, the effect of pressure profile curvature !iii" changes these results substantially. When it dominates, the curvature effect reduces the transition threshold to the lower end of the range of heating power, which falls within the phase coexistence region for both forward and back transitions. This softens the transition threshold requirements. In this limit, the model with pressure curvature also predicts transitions which occur in regimes of flat density and driven exclusively by the temperature gradient. This allows the pedestal to extend beyond the fueling depth, and also allows some decoupling of density and pressure profiles. In a parameter range where the pressure curvature is less important the transition occurs somewhere between the above two limits. © 2008 American Institute of Physics. #DOI: 10.1063/1.3028305$
منابع مشابه
Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملNumerical Study of Coupled Fluid Flow and Heat Transfer in a Rectangular Domain at Moderate Reynolds Numbers using the Control Volume Method
In this paper, we have used a control volume method to investigate the problem of a fully coupled fluid flow with heat transfer in a rectangular domain with slip wall boundary conditions. We have used this method to solve the governing equations and thereby to compute the convective and diffusive fluxes at the cell faces of the control volumes considered around the grid points of computational ...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملThermal Behavior of a New Type of Multi-Layered Porous Air Heater
Based on an effective energy conversion method between gas enthalpy and thermal radiation, a multi-layered type of porous air heater has been proposed. In the five layered structure which is analyzed in this work, there are five porous layers which are separated by four quartz glass windows. The main layer operates as a porous radiant burner that products a large amount of thermal radiative ene...
متن کاملAdvance Modelling and Simulation of Industrial Boilers
This paper presents some of the results of the simulation in the radiation section of an industrial boiler using an advanced mathematical model. Calculations are described for the flow, heat transfer, and chemical reaction processes occurring within a gas-fired cylindrical furnace. The calculation procedure is a two dimensional one in which the main hydrodynamic variables are the velocity and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013